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A previous paper described a network of simple integrate-and-fire
neurons that contained output neurons selective for specific spa-
tiotemporal patterns of inputs; only experimental results were
described. We now present the principles behind the operation of
this network and discuss how these principles point to a general
class of computational operations that can be carried out easily and
naturally by networks of spiking neurons. Transient synchrony of
the action potentials of a group of neurons is used to signal
‘‘recognition’’ of a space–time pattern across the inputs of those
neurons. Appropriate synaptic coupling produces synchrony when
the inputs to these neurons are nearly equal, leaving the neurons
unsynchronized or only weakly synchronized for other input cir-
cumstances. When the input to this system comes from timed past
events represented by decaying delay activity, the pattern of
synaptic connections can be set such that synchronization occurs
only for selected spatiotemporal patterns. We show how the
recognition is invariant to uniform time warp and uniform inten-
sity change of the input events. The fundamental recognition
event is a transient collective synchronization, representing ‘‘many
neurons now agree,’’ an event that is then detected easily by a cell
with a small time constant. If such synchronization is used in
neurobiological computation, its hallmark will be a brief burst of
gamma-band electroencephalogram noise when and where such a
recognition event or decision occurs.

How is information about spatiotemporal patterns integrated
over time to produce responses selective to specific patterns

and their natural variants? Such integration over time is a
fundamental component of sensory perception. Information
must of course also be integrated over space, but this problem
is understood much better: for example, visuospatial information
is encoded initially in the retina through a ‘‘labeled line’’ code (1)
whereby individual retinal ganglion cells respond only to stimuli
in a restricted part of visual space (their receptive field).
Integration over space is then a straightforward matter of
converging inputs from cells with different receptive fields. In
contrast, the fundamentals of how temporal information is
represented and how it can be integrated remain mysteries. This
problem exists particularly for timescales longer than a few tens
of milliseconds, at which point transmission delay times can no
longer be used as biologically plausible building blocks for
bringing information from different times together (2, 3). Inte-
gration over times on the order of 0.5 sec or longer in biologically
plausible networks is a principal focus of our report. The
principles underlying such integration over time, in fact, belong
to a broader and more general class of computations.

The ideas will be illustrated by studying a particular case of
recognizing spatiotemporal patterns of events. Short spoken
words can be encoded into such a representation by detecting
features in different frequency bands of a spectrogram (4, 5).
The specific example used in the previous companion paper
(paper 1; ref. 6), and used here again, will be that of recognizing
the spoken word ‘‘one’’ after it has been encoded into a
spatiotemporal pattern of events.

The Natural Coding of Time in Decaying Delay Activity. Neuronal
responses to transient stimuli decay with a wide variety of
different timescales, ranging from tens of milliseconds to tens of
seconds. At the longest timescales, the activity is often referred
to as ‘‘delay activity’’ (7–10). When such activity decays with
time, the ratio of the present activity to the activity at initiation
implicitly encodes the time that has elapsed since the initiating
event occurred. Thus, time, on many different scales, is encoded
naturally, if implicitly, at many levels of processing in the nervous
system.

Consider a set of decaying activities where the initial firing rate
for each neuron is the same for all events that are able to trigger
that neuron. Then the neuron’s firing rate is, by itself, an implicit
measure of time since the triggering event. We will describe how
a network of spiking neurons can carry out computations on such
a representation of time. In the discussion section, we will
describe briefly how to generalize to the situation in which the
initial firing rates are not stereotyped.

Recognizing a Spatiotemporal Pattern. We wish to recognize
whether a pattern of space–time events described by a set of
times ti lying within an interval of '0.5 sec approximately match
with a model of events ti

m. Only relative time differences within
each pattern are important—the overall time at which the test
pattern of events occurs is arbitrary. We will refer to each index
i as an ‘‘input channel.’’ Consider a pattern composed of three
events, one in each of three channels. One event occurs at 0.075
sec, one at 0.150 sec, and one at 0.300 sec. Let each of these
events trigger a set of currents with a variety of fixed decay rates,
illustrated in Fig. 1a. Now suppose that this pattern (0.075, 0.150,
0.300) is the target pattern to be used as a model. It is possible
to select three decay rates, one per channel, that generate
currents that reach almost the same level at some time tr (rings
in Fig. 1a). There are many possibilities for tr, but once tr (larger
ring in Fig. 1a) has been picked, the set of decay rates is unique
(selected currents shown in Fig. 1b). When the pattern of input
event times is close but not identical to the target pattern, the
selected currents will be triggered at times such that the con-
vergence neck is not a point but is still small (Fig. 1c). When the
input pattern has no relationship to the target pattern, there is
no such convergence (see Fig. 1d). Thus, the degree of conver-
gence of these currents is an indicator of the degree of similarity
to the original pattern.

How can the convergence of current levels be detected?
Suppose each of the selected currents drives an integrate-and-
fire neuron. Synaptic connections between neurons that have
similar firing rates often produce synchrony between the action
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potentials of these neurons (11, 12). When the input pattern
matches the model, the currents driving the neurons will con-
verge at some point in time, the firing rates of the driven neurons
will then be similar, and synaptic coupling between neurons
should lead to strong transient synchronization of their action
potentials near this time. When the input pattern is very different
from the model, there will be no convergence of input currents
and firing rates, and therefore, there will be little synchroniza-
tion. Thus, transient synchronization of neurons with convergent
firing rates is the fundamental recognition event. The precise
degree of synchronization depends on how close together the
firing frequencies are, the strength of coupling between the
neurons, and the number of neurons involved.

Invariance with respect to some parameters is often a desir-
able feature of recognition systems (e.g., recognizing the identity
of a face independent of its spatial scale or recognizing an odor
independent of its overall concentration). The convergence of
current levels contains a natural invariance. When the target
pattern is rescaled in time (time-warped) and presented to the
system, the selected currents converge (Fig. 1e), albeit at a
different common level. We have illustrated this point in Fig. 1
by using linear decays, but as we will now show, the result holds
more generally, including exponential decays. A uniform time-
warp by a scale factor s changes the intervals {ti 2 t2, t2 2 t3, . . . }
to the pattern {s(t1 2 t2), s(t2 2 t3)}. Suppose that after an event
at time t

i
, the currents that respond to this event with a variety

of decay times tj are a function only of the variable (t 2 ti)ytj.
That is, there is a universal form function f ((t 2 ti)ytj) for the
decaying currents, and the different decay rates are obtained by
having different values of tj. For each input channel i, we choose
a decay time ti such that the currents from the different channels
are all of the same at time tr: (tr 2 ti)yti 5 (tr 2 t1)yt1 for all i.
But for an input pattern scaled by s, it is also true that (str 2 sti)yti
5 (str 2 st1)yt1 for all i, so the same set of currents with the same
decay rates will reach a point again at which they are all equal
(although the time and level at which they meet will be different
from the case of s 5 1). This result, which does not depend on
the form of the decay function f(), is what makes the time-warped
example of Fig. 1e still have a convergence, even though the
warp-factor s is quite different from unity. The degree of
convergence of current levels is a time-warp invariant indicator
of degree of similarity to the original pattern.

The recognition can be described in terms of a pattern match
of times of occurrence ti with a model for these events ti

m. The
match is carried out including an arbitrary scaling factor s and an
arbitrary shift tshift. Events present in the model but missing in
the presented pattern merely decrease the size of the signal at

recognition, and thus require a better match of other times to
generate recognition. When most of the events agree on tshift and
s, events that greatly disagree essentially are ignored, viewed as
not even occurring. The essence of the algorithm implemented
can be described mathematically by finding the maximum over
s and tshift of the function

Recognition score 5 Si W((sti 2 ti
m 2 tshift)2 1 W2)21.

The sum is carried out over all channels i that contain events
both in the model and in the incoming pattern. W is a width
parameter determined by the strength of the synaptic coupling
in the synchronizing system. The particular functional shape of
the terms in the sum is arbitrary. This form of recognition score
is extended readily to more elaborate systems with multiple
events within a single channel, to weighting events differentially,
and to having events that are inhibitory in character.

Experiments on Speech
Paper 1 was a demonstration of these ideas applied to speech.
There, sound waveforms were transformed into spatiotemporal
patterns of events by detecting onsets, offsets, and peaks of
power within various frequency bands. There were 40 different
input channels, each of which corresponded to a particular
detector type (i.e., onset, peak, or offset) and frequency-band
combination. An event on any one of these channels was
analogous to one of the events shown in Fig. 1a and triggered the
start of a set of slowly decaying currents, of which there were 20
for each channel. With 40 channels, this made a total of 800
different input lines. The full set of 800 such inputs was labeled
in paper 1 as ‘‘inputs from area A.’’ Most speech files had events
on all 40 channels; thus, typically all 800 input lines were
activated in response to any single speech file. Each one of these
800 input currents was used to drive a single excitatory and a
single inhibitory cell in a pool of otherwise-identical integrate-
and-fire neurons that were labeled in paper 1 as ‘‘a (excitatory)
and b (inhibitory) neurons of area W.’’ Each of the smooth input
currents from area A can be thought of as the sum of the inputs
from a large set of closely similar unsynchronized neurons.
Responses of single area A neurons were illustrated in figure 4
of paper 1.

‘‘Training’’ the network to recognize a particular template of
spatiotemporal events consisted simply of selecting a set of a and
b neurons that would have converging firing rates in response to
the target template (analogous to selecting the large ring in Fig.
1a) and creating mutual all-to-all connections within this set.
Importantly, the strength of excitation and inhibition in the
all-to-all coupling within this set was balanced, such that even

Fig. 1. Time-warp invariant convergence of decaying currents. (a) Decaying currents triggered by events in three different channels: one current at 0.075 sec,
one at 0.15 sec, and one at 0.3 sec. Responses for different channels are shown in different shades of gray. The rings identify points at which three currents, one
for each channel, converge. (b) The converging currents for the three currents selected by the larger ring in a. (c) An input pattern that is a noisy version of the
target pattern. (d) A temporal pattern very different from the target pattern. (e) A time-warped version of the original pattern.
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when many neurons were driven by speech, the net input current
to a cell came chiefly from its input from area A. All of the
excitatory connections were made equally strong, and all of the
inhibitory connections were made equally strong. The fast
excitatory synapses and longer-duration inhibitory synapses then
led the neurons to synchronize in response to the target tem-
plate. These neurons also synchronized in response to input
patterns that were similar, although not identical, to the template
and in response to time-warped versions of the template (Fig. 2
a and b). Time-warp invariance was a key component of the
ability to generalize from a single example. In contrast, stimuli
that were significantly different from the target template did not
lead to convergence of the neurons’ firing rates (Fig. 2d), and in
this case, the neurons did not synchronize strongly (Fig. 2e). The
selected set of excitatory and inhibitory neurons was also
connected directly to an output neuron (labeled as a g cell in
paper 1). When the neurons synchronized, the g cell received a
high-amplitude oscillating input current that drove it to fire in a

characteristic burst of 30–60 Hz (Fig. 2c). When the neurons
synchronized weakly or not at all, the g cell was not driven to fire
(Fig. 2f ).

Very strong oscillatory drive can generate close doublets of
action potentials on each cycle, with separations little more than
the absolute refractory period. We have seen such doublets in all
cell types.

Possible Enhancements. Two enhancements to the system, one
having to do with multiple events and one with the role of
negative evidence, improve the performance of the system on
speech and probably in other pattern recognition problems. For
simplicity, we refrained from implementing these enhancements
in paper 1. In the system described, once a cell in area A was
launched on its stereotyped response, it continued that response
until the end of its decay. A second event of the same type
occurring within the response time of this cell was simply
ignored. The system functions better when the information

Fig. 2. Synchronization indicates recognition of an input pattern that is a similar (within time warp) version of the target pattern. (a) The 40 currents from area
A that converge in response to the target template. Here, they almost converge near t 5 0.6 sec in response to a pattern similar but not identical to the target.
(b) Spike rasters of responses of 160 a or b neurons. Each dot represents an action potential, and each row corresponds to a single neuron. Shown below the
gray line, 40 of the neurons belong to the selected set, driven by the currents shown in a, that corresponds to the target pattern. Note the neurons’
synchronization. The other 120 neurons (above the gray line) are drawn randomly from the rest of the population of a and b neurons. (c) Intracellular potential
of the g neuron that receives input from the selected set of a and b neurons. The g neuron spiking threshold has been set to infinity here to allow full observation
of the synaptically driven membrane potential; g neuron-firing threshold is normally 255 mV (horizontal dashed line). Synchronized input leads to strong
oscillations and many threshold crossings. Random fluctuations in the oscillation amplitude can lead to occasional ‘‘missing’’ g spikes (arrow). (d, e, and f ) Same
format as in a, b, and c in response to a nontarget pattern. (d) Input currents do not converge. (e) Neurons synchronize only weakly. ( f) g cell does not fire.
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carried by second or further events is not lost, even if the events
occur within the response time. This goal can be achieved by
having a pool of cells of each type in area A, with each having
a small probability (for example, 0.3) of being activated when its
appropriate feature arises. In this case, two different sets of
neurons (statistically) will be turned on at two different times by
two features of the same type, even though they occur close
together in time. When two features of the same type occur
within a given word, both features can then contribute to the
recognition.

A second enhancement is in regard to the fact that events at
particular times may sometimes be evidence against recognition
of a target pattern. For example, a particular event occurring at
a particular time might be characteristic of a pattern that is
similar to, but different from, the target. By using slightly
modified inhibitory synaptic biophysics, such negative contribu-
tions to the recognition computation can be included easily in
the framework we have described. Let the new inhibitory
synapses have a fast, almost instantaneous rise time similar to the
excitatory rise time, but let them still have a slower decay
constant of 6 msec. Keeping total excitation and inhibition
currents balanced means that the initial peak current caused by
simultaneously activated excitatory and inhibitory synapses will
still be excitatory. This early excitation was the key feature that
enabled rapid synchronization, so the network of cells will still
synchronize. Now let the a and b cells that correspond to a
negative-evidence event receive the usual input from the other
positive-evidence cells. These negative-evidence cells will syn-
chronize then with the positive-evidence cells if their input from
area A drives them at the right time. Finally, connect the
negative-evidence b cells to the g cell and the positive-evidence
cells with the fast-rise-time inhibitory synapses described above,
but connect the negative-evidence a cells to the g cell and
positive-evidence cells with slow excitatory synapses (e.g., N-
methyl-D-aspartate synapses). Then the fast part of the synaptic
current received from the synchronized negative-evidence a–b
cells will be inhibitory. This method will make the g cell less
likely to fire and inhibit the synchronization of the positive-
evidence cells. This enhancement is possible because in a system
of synchronizing neurons, details of synapse time response and
membrane time constants can strongly affect the computation
that will be performed.

We have carried out explorations that suggest that, with these
two enhancements, interesting discrimination is achievable even
with connected speech and speech-like noise in the background.

Properties and Extensions of the Recognition System. Multiple pat-
terns. Embedding multiple patterns within the same network of
a and b neurons is straightforward. In paper 1, we trained for the
template that corresponded to an example of the spoken word
‘‘one.’’ In addition, we then trained for 9 other randomly chosen
templates [lists of 40 times drawn independently from a uniform
distribution in the range (0, 0.5)]. This training was done by
simply adding the synaptic connections between a and b cells
that corresponded to each successive template if the connections
did not already exist. At the end of this process, each a or b
neuron was a member of the selected set of, on average, 1.45
target patterns. (The final number of a and b neurons in the
network was less than 800, because neurons that did not partic-
ipate in any patterns were deleted.) Nevertheless, when testing
with one pattern, the overlap between the different sets did not
cause a disabling spread of synchronization to neurons partici-
pating in patterns other than the one presented (see rasters of
neurons above the gray line in Fig. 2b). In a small set of
exploratory experiments, we have successfully embedded 25
random patterns in the network so each a or b cell participated,
on average, in the memory of more than 2 patterns. In this
regime, excitatory and inhibitory currents caused by the numer-

ous recurrent synaptic connections between a or b neurons are
larger than the input currents from area A, but the cells still
synchronize selectively for their input patterns. The capacity,
however, is limited. In the limit of an infinite number of
embedded patterns, all a and b cells are connected to each other,
and the neurons synchronize under all circumstances. The
transition between the two regimes (selective synchronization in
response to specific patterns, ‘‘epileptic’’ synchronization in
response to all patterns) seems to have the nature of a phase
transition. We also tried selectively deleting the few a or b
neurons that, in any particular instantiation of the network,
randomly happened to participate in the largest number of
patterns. When this deletion was done, the number of embed-
dable patterns per cell that could be stored before reaching the
epileptic regime was made substantially larger. Thus, the topol-
ogy of the patterns and connections between them seems highly
relevant to the capacity of the network.

Extensions. The properties of the system we have described do
not critically depend on the details of its construction. In this
sense, there is a large ‘‘space’’ of neural circuits with properties
similar to the ones demonstrated. For example, the system
described had a balance between excitation and inhibition,
achieved by having both excitatory and inhibitory cells driven
from area A. However, an equivalent balance can be achieved in
a neural circuit in which area A drives only a cells, and the
inhibitory b cells receive input only from a cells. We have shown
in simulations that such a system works as well as the one
described, even when using cell properties such that the inhib-
itory cells show little synchronization.

Balance prevents the corruption of the basic input information
arriving at the a and b cells (i.e., the input currents from area A)
by the recurrent synaptic inputs that are essential to generate the
collective synchronization. Balance between excitation and in-
hibition is important in the present network when multiple
patterns and multiple g cells are to be supported by the same set
of a and b cells. (An unbalanced system may also be useful in
some contexts.) Balanced excitation and inhibition has been
proposed as the mechanism behind the irregular firing of cortical
cells (13–15). Brief explorations with large networks have shown
that even at large noise levels that lead to characteristically
irregular firing of single a2b cells, network-level collective
synchronization, practically undetectable at the single or paired
neuron level, still can occur.

In paper 1 and our multiple pattern experiments described
above, all excitatory synapses from a cells onto a and b cells were
equally strong, and all inhibitory synapses from b cells were
equally strong. Similar simplifications were made in connections
to g cells. This arrangement was arbitrary. That large random
variations in synaptic strengths (see paper 1) did not affect the
recognition is a strong indicator that the pattern of connections,
not the detailed synaptic strengths, is the key to pattern-selective
synchrony. Fine-tuning for optimality would involve synapses
having a range of strengths.

Discussion. To learn to recognize a pattern, the synaptic strengths
must change as a result of pre- and postsynaptic cell activity. The
kind of relationship between synapse change and the neuronal
activity that is desirable for recognizing a new pattern is closely
related to known neurobiological temporal-learning protocols. If
a and b cells are connected to g cells with initial excitatory and
inhibitory synapses, the g cells will not be driven until the a and
b cells develop collective synchrony. When this happens, g cells
will fire just after the a cells do, and plasticity protocols that have
been described experimentally (16, 17) will lead to strengthening
and pruning appropriate for a to g cell synapses. For developing
appropriate a-to-a connections, slightly more complex learning
rules are necessary: for example, a synaptic enhancement re-
quiring the occurrence of two to four near coincidences (but not
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on average, by a single near coincidence) between consecutive
action potentials of the pair of cells, with both cells firing each
time, over a time period of '0.1 sec, would be very powerful.
This event will be common when two cells are firing at almost the
same rate and would be generated by the temporal crossing of
the firing rates of a pair of cells; it is unlikely otherwise. Synaptic
modifications caused by crossing firing rates seem not to have
been studied experimentally.

The stereotyped response strengths used in paper 1, in which
area A neurons responded with the same initial firing rate
regardless of the intensity of the event that triggered them, are
not common in biology, but are also not necessary in the present
system. If the initial amplitudes of the signals from area A are
a function of the salience of the events, all scaling together when
the events are more salient, the convergence properties that led
to synchronization and pattern selectivity are preserved. Such a
system has two scalar invariants to its recognition process:
invariance with respect to time-warp and invariance with respect
to pattern salience. More clever encodings of signals into
responses of area A cells could lead to the ability to generate
convergence and transient synchronization with more complex
invariants.

The mammalian olfactory bulb shows strong gamma-band
local electroencephalogram behavior (18), and there is evidence
in lower systems for the role of synchrony and of oscillation in
olfactory pattern discrimination and learning (19). In mammals,
each of '2,000 glomeruli has an input that is proportional to the
time-dependent odor strength during a sniff, with a proportion-
ality coefficient that depends on the type of receptor cells that
impinge on that glomerulus. To form a collective synchronizing
system of the type described here in response to a time-varying
input (20), it is essential to link together mitral cells which
transiently receive the same strength of synaptic input. A given
odor will drive different glomeruli with different strengths.
These two facts need not contradict if the different mitral cells
driven by a single glomerulus have systematically different
responses to the drive of that glomerulus, either in the current
that they receive from that glomerulus or in their threshold
characteristics. The 1:25 ratio of glomeruli to mitral cells then
would have the computational function for olfaction that the 20
different time decays in area A have for the speech problem.

There is potential for analytical treatment of the transient
synchronization in special cases. An ‘‘effective field’’ treatment,
exact only in the limit of infinite N, will be quantitatively useful
for large but finite N, the biological case, and has some prospect
for treating the real dynamical problem in which the distribution
of input currents is broad, then narrows, and returns to being
broad. For studying such effects, the system can be simplified
through amalgamating a and b cells into a single cell type with
a synaptic current that sums the excitatory postsynaptic current
and inhibitory postsynaptic current. Indeed, the simplest bio-
logical network of this sort may be a set of mutually connected
inhibitory neurons coupled by synapses and gap junctions (21).

Conclusion. Many possible roles have been suggested for syn-
chrony (19, 22–25). Here we have focused on the description of
a mechanism by which transient synchrony may arise and a
computational algorithm that exploits this mechanism. The
fundamental observation made in this paper was that because
weakly coupled neurons with similar firing rates can easily
synchronize (11, 12), neurons with transiently similar firing rates
can transiently synchronize, and this transient synchronization
can serve as a powerful computational tool. Detecting tran-
siently similar firing rates is an operation that is carried out very
naturally and easily by networks of spiking neurons: simple
mutual connections between neurons suffice to carry it out. The
resulting collective synchronization event, which might be de-
scribed as a ‘‘MANY VARIABLES ARE CURRENTLY AP-

PROXIMATELY EQUAL’’ operation, is a basic computational
building block. An understanding of transient synchrony as a
computational building block allowed the design of a network
that displayed time-warp-invariant spatiotemporal pattern rec-
ognition of real-world speech data. The recognition event in this
network was a collective transient synchronization effective in
repeatedly driving an otherwise silent g neuron. Stimulus-
dependent synchrony in computational networks of neurons or
neuron-like elements has been previously described (e.g., ref.
26), but generally with respect to static patterns that do not
involve temporal integration or transient synchrony.

Just as integrate-and-fire neurons can be thought of as natu-
rally implementing a fuzzy ‘‘AND’’ or fuzzy ‘‘OR’’ operation
(depending on the settings of the cell’s parameters), networks of
appropriately configured spiking neurons naturally implement a
fuzzy ‘‘MANY ARE NOW EQUAL’’ operation. This operation
can serve many computational roles in addition to the one
demonstrated here. For example, it could be used to segment two
odors that fluctuate independently in time (20), or the output of
the g cells themselves could be turned again into a smooth
current, on which further computational operations could be
carried out. The MANY ARE NOW EQUAL synchronization
operation may be as fundamental and general a computational
building block at the level of spiking neuron networks as the
firing threshold is in single spiking cells.

Networks of neurons in which excitation and inhibition are
roughly balanced, often described in the computational neuro-
science literature (13–15), can carry out computation easily by
transient synchronization on top of and separately from the
encoding of information in the neurons’ firing rates.

When neurons are arranged in an orderly fashion, synchro-
nized activity in a cell type is expected to produce a burst of
gamma-band electroencephalogram. One could be led easily to
wonder to what extent the frequently observed local burst of g
activity (27) can be associated with decisions of the type de-
scribed here.

Connectionist modeling of higher nervous function is based
often on nonspiking units, the characteristics of which are
inspired by approximate rate-model properties of single neurons.
Such units are used typically to represent many individual
neurons, averaged into a single effective processing unit. In
contrast, the collective effects and decisions we have presented
here cannot be described in a similar fashion. That is, the
higher-level mathematical description of a decision by a group of
synchronizing neurons bears no resemblance whatsoever to the
mathematical description of a single neuron. Hydrodynamics
serves as a useful analogy: we know that the mathematics of
aerodynamics relevant to airplane design cannot be described in
terms of huge ‘‘effective molecules’’ colliding with an airplane
wing. Similarly, we wonder how much of higher nervous function
will be usefully describable with the mathematics of sigmoid
units as its basis.

Appendix. How did the single unit results of paper 1 Point the
way? We have claimed that the experimental information pre-
sented in paper 1 was sufficient to deduce the principles of
operation behind the system. Now we describe one deductive
chain that leads ineluctably from the experiments to the prin-
ciples. Examining the implications of the raw basic data, and not
merely relying on a conventional and incomplete summary of
that data (in this case, the peristimulus time histogram), is key
to finding the computing principle of this system.

What could be responsible for the spike rasters of a g cell in
a recognition event consisting of a slow burst of 3–8 action
potentials at 30–60 Hz? (i) Bursting could be an intrinsic cellular
property caused by complex biophysics, (ii) the input current
could rise briefly from below threshold to a nearly fixed plateau,
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or (iii) the input current could itself contain the rhythm and have
a strong 30- to 60-Hz oscillation.

Because the g neurons are simple leaky integrate-and-fire
neurons, they do not have an intrinsic ability to generate bursts
making i impossible. The slow bursts must be caused by synaptic
currents. A comparison of the different rasters of a single file
shows compellingly that ii cannot be the case. Most of the spikes
of one raster correspond well to spikes in another if small shifts
are made in the time axis, except that some of the spikes seem
to be missing. Fig. 3 shows six spike rasters from paper 1’s figure
1a (Upper) and six rasters from figure 1c (Lower) time-shifted by
small arbitrary amounts into alignment. All of these spike trains
are virtually identical except for occasional missing spikes. Noise

fluctuations in a fairly steady current would produce fluctuating
intervals and a loss of registry between different rasters after a
short time because of accumulated differences rather than an
appearance of missing spikes and doubled or even quadrupled
interspike intervals. These g cell spike rasters cannot be due to
a nearly constant input current plateau plus noise.

We are left with only the third possibility, which then must be
true, as Sherlock Holmes said (28). Given the size of excitatory
postsynaptic potentials, the firing rates of the a cells at the time
of recognition, and the number of excitatory synapses impinging
on a g cell, above-chance overlaps of excitatory postsynaptic
potentials are necessary to drive a g cell. The burst must be due
to almost periodic pulses of total synaptic input currents caused
by roughly synchronous, almost periodic spiking of the a and b
cells that drive this g cell. When an utterance is not recognized,
the synchronization of a and b activity must be at a lower level.
Missing spikes are now logical in the presence of noise fluctu-
ations, because the rhythm of the transient coherent oscillation
in the a and b system will continue even though its amplitude
fluctuates (see arrow in Fig. 2c). Given this observation, the
entire question of how the system ‘‘computes’’ must involve the
collective synchronization of the subset of a and b neurons that
drive a g cell.

In order for a and b neurons to fire synchronously for more
than one spike, their interspike intervals must be similar; there-
fore, the net input current to the two neurons must also be
similar. This analysis immediately suggests looking for crossings
of the inputs from area A, as in Fig. 1, and this in turn leads to
reasoning that completes an understanding of the principles of
operation of the system, including time-warp invariance.

We thank David W. Tank for comments on the manuscript.

1. Kuffler, S. W., Nicholls, J. G. & Martin, A. R. (1984) From Neuron to Brain
(Sinauer, Sunderland, MA), 2nd Ed., pp. 19–73.

2. Sobel, E. C. & Tank, D. W. (1994) Science 263, 823–826.
3. Bunomano, D. V. & Merzenich, M. M. (1995) Science 267, 1028–1030.
4. Hopfield, J. J. (1996) Proc. Natl. Acad. Sci. USA 93, 15440–15444.
5. Hopfield, J. J., Brody, C. D. & Roweis, S. (1998) Adv. Neural Inf. Processing 10,

166–172.
6. Hopfield, J. J. & Brody, C. D. (2000) Proc. Natl. Acad. Sci. USA 97,

13919–13924. (First Published November 28, 2000; 10.1073ypnas.250483697)
7. Fuster, J. M. (1995) Memory in the Cerebral Cortex: An Empirical Approach to

Neural Networks in the Human and Nonhuman Primate (MIT Press, Cambridge,
MA).

8. Chafee, M. V. & Goldman-Rakic, P. S. (1998) J. Neurophysiol. 79, 2919–2940.
9. Salinas, E., Hernández, A., Zainos, A. & Romo, R. (2000) J. Neurosci. 20,

5503–5515.
10. Romo, R., Brody, C. D., Hernández, A. & Zainos, A. (1999) Nature (London)

399, 470–473.
11. Matthews, P. C., Mirollo, R. E. & Strogatz, S. H. (1991) Physica D 52, 293–331.
12. Tsodyks, M., Mitkov, I. & Sompolinsky, H. (1993) Phys. Rev. Lett. 71,

1280–1283.
13. Shadlen, M. N. & Newsome, W. T. (1994) Curr. Opin. Neurobiol. 4, 569–579.

14. Gerstein, G. L. & Mandelbrot, B. (1964) Biophys. J. 4, 41–68.
15. van Vreeswijk, C. & Sompolinsky, H. (1998) Neural Comput. 10, 1321–1371.
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Fig. 3. Aligned spike rasters from figure 1 a and c of paper 1.
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